If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+13r+14=0
a = 3; b = 13; c = +14;
Δ = b2-4ac
Δ = 132-4·3·14
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*3}=\frac{-14}{6} =-2+1/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*3}=\frac{-12}{6} =-2 $
| x(3x+4)+4x+1=0 | | -4y/5=20 | | 3x-4+2x+5=360 | | u-51=268 | | 226+2x+97+x=360 | | 8(x-8)=72 | | 7r^2+64r+9=0 | | c=2(3.14)(62.5) | | 5.5k+4-4.5k=9 | | x(3x+4)+2(4x+1)=0 | | 7x^2=23-2x^2=23-2x^2 | | 3n(n+10)=0 | | (a-13)*4=28 | | /-7=2x-7 | | 0,07=0,057+x | | 4x-12=2x+60 | | 4x-12+2x+60=180 | | 5d–8=17 | | 18=7/4x | | 4=v÷11 | | -6x+10=-4x | | 3x+1=(-23)+7x | | 2(x+6)=5x-16 | | 7x=43.8 | | 7-7x+12+2x=4 | | 2(4w-3)=-2(2w+15 | | 3d=6d | | w/2+17=19 | | 7x-4+2x+5=2x+14 | | 5(g-2)=3(g-2) | | 1/2(4x+18)=2(x-4) | | 7(4s+4)=224 |